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1. INTRODUCTION

FMRI (Functional Magnetic Resonance Imaging) is a powerful non-invasive tool in the study of the function of the brain,
used by psychologists, psychiatrists, and neurologists. FMRI can give high quality visualization of the location of activity
in the brain resulting from sensory stimulation or cognitive function. It allows, for example, the study of how the healthy
brain functions, how it is affected by different diseases, how it attempts to recover after damage, and how drugs can
modulate activity or post-damage recovery.

After an fMRI experiment has been designed and carried out, the resulting data must be passed through various analysis
steps before the experimenter can get answers to questions about experimentally-related activations at the individual
or multi-subject level. This document gives a brief overview of the most commonly-used analysis pipeline: data pre-
processing, temporal linear modelling and activation thresholding. For more details, see Jezzard et al. (2001).

2. FMRI DATA

In a typical fMRI session a low-resolution functional volume is acquired every few seconds. (MR volumes are often also
referred to as “images” or “scans”). Example slices from an fMRI volume are shown in Figure 1. Over the course of
the experiment, 100 volumes or more are typically recorded. In the simplest possible experiment, some images will be
taken whilst stimulation® is applied, and some will be taken with the subject at rest. Because the images are taken
using an MR sequence which is sensitive to changes in local blood oxygenation level, parts of the images taken during
stimulation should show increased intensity, compared with those taken whilst at rest. The parts of these images which
show increased intensity should correspond to the brain areas which are activated by the stimulation.

Figure 1. Example slices from an example fMRI volume, before and after spatial filtering of 5mm FWHM.

An example time-series from a single voxel is shown in Figure 2. Image intensity is shown on the y axis, and time (in
scans) on the z axis. As described above, for some of the time points, stimulation was applied, (the higher intensity
periods), and at some time points the subject was at rest. As well as the effect of the stimulation being clear, the high
frequency noise is also apparent. The aim of fMRI analysis is to identify in which voxels’ time-series the signal of interest
is significantly greater than the noise level.

*For the remainder of this document, reference to “stimulation” should be taken to include also the carrying out of physical or
cognitive activity.
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Figure 2. An example time series at a strongly activated voxel from a visual stimulation experiment. Here the signal is
significantly larger than the noise level. Periods of stimulation are alternated with periods of rest - a complete stimulation-
rest cycle lasts 20 scans.

3. PREPARING FMRI DATA FOR STATISTICAL ANALYSIS

Initially, a 4D data set is pre-processed, i.e., prepared for statistical analysis. Once data has been acquired by the MR
scanner, the pre-processing starts by reconstructing the raw “k-space” data into images that actually look like brains.
Very often, the next step applied is slice-timing correction; because each slice in each volume is acquired at slightly
different times, it necessary to adjust the data so that it appears that all voxels within one volume had been acquired at
exactly the same time (all subsequent processing is far simpler if this is done). Each volume is now transformed (using
rotation and translation) so that the image of the brain within each volume is aligned with that in every other volume;
this is known as motion correction.

Most researchers now blur each volume spatially, principally to reduce noise, hopefully without significantly affecting the
activation signal. Figure 1 shows example slices of an FMRI volume before and after a small amount of spatial smoothing.
After this, each volume’s overall intensity level may be adjusted so that all volumes have the same mean intensity - this
intensity normalization can help reduce the effect of global changes in intensity over time. Reduction in low and high
frequency noise is normally desired as a final step; each voxel’s time series is filtered in order to achieve this.

The purpose of the preprocessing is to remove various kinds of artefacts in the data, and to condition the data, in order
to maximize the sensitivity of later statistical analysis, and also, in some situations, to increase the statistical validity.

4. STATISTICAL ANALYSIS OF ACTIVATION IMAGES

In this section we give a very brief overview of different approaches to obtaining activation maps, followed by a slightly more
detailed introduction to analysis via the general linear model (GLM — currently the most popular statistical approach)
and also various methods of thresholding the resulting statistics maps.

After the pre-processing steps, statistical analysis is carried out to determine which voxels are activated by the stimulation.
This can be simple correlation analysis or more advanced modelling of the expected haemodynamic response to the
stimulation. Various possible statistical corrections can be included, such as correction for smoothness of the measured
time series at each voxel. The main output from this step is a statistical map which indicates those points in the image
where the brain has activated in response to the stimulus.

It is most common to analyse each voxel’s time series independently (“univariate analysis”). For example, standard
general linear model (GLM) analysis is univariate (although cluster-based thresholding, commonly used at the final
inference stage, does use spatial neighborhood information and is therefore not univariate). This is the approach which
we are going to concentrate on in this document. However, there are also “multivariate” methods (e.g. Friston et al.
(1996)) which process all the data together; these methods make more use of spatial relationships within the data than
univariate analysis.



There is also a distinction between model-based and model-free methods. In a model-based method, e.g. Friston et al.
(1995), a model of the expected response is generated and compared with the data. In a model-free (or data-driven)
method, effects or components of interest in the data are found without attempting to use our knowledge of the experi-
mental stimulus, but instead on the basis of a decomposition of the data into uncorrelated time courses or spatial patterns
(Singular Value Decomposition - SVD, Principal Component Analysis - PCA), or into statistically independent spatial
or temporal components (Independent Component Analysis - ICA) (McKeown et al., 1998; Beckmann and Smith, 2004).
This allows us to find unexpected things in the data (either signals of interest or noise artefacts), and is also useful for
the analysis of data where it is difficult to generate a good model. Figure 3 shows a comparison of the findings of a
model-based approach and a model-free approach for a visual stimulus experiment.

Model-based Model-free

Figure 3. An experiment with alternating periods of rest and visual stimulation. On the left are the areas in the brain
labeled “active” using a model-based method, along with the assumed time series modelled as the stimulus convolved with
a haemodynamic response function. On the right are the areas in the brain labeled “active” using a model-free method
(spatial ICA (Beckmann and Smith, 2004)) for a component whose temporal pattern is also shown. The model-free
approach extracts a component corresponding to the visual stimulus without using our knowledge of the stimulus timing.
The activation maps are overlaid on a high resolution structural image.

4.1. General Linear Model - Overview

General linear modelling sets up a model (i.e., a general pattern which you expect to see in the data) and fits it to the
data. If the model is derived from the timing of the stimulation that was applied to the subject in the MRI scanner, then
a good fit between the model and the data means that the data was probably caused by the stimulation.

As the GLM is normally used in a univariate way, the rest of this section considers one voxel only, and the fitting of
models to a single voxel’s time-course. A very simple example of linear modelling is

y(t) = B*x(t) + c+elt), (1)

where y(t) is the data, and is a 1D vector of intensity values - one for each time point, i.e., is a function of time. z(t) is
the model, and is also a 1D vector with one value for each time point. In the case of a square-wave block design, x(t)
might be a series of 1s and 0s - for example, 00000111110000 0 etc. 8 is the parameter estimate for z(t), i.e.,
the value that the square wave (of height 1) must be multiplied by to fit the square wave component in the data. ¢ is a
constant, and in this example, would correspond to the baseline (rest) intensity value in the data. e is the error in the
model fitting. Thus the model fitting involves adjusting the baseline level and the height of the square wave, to best fit
the data; the error term accounts for the residual error between the fitted model and the data.

If there are two types of stimulus, the model would be

y=pP1*x1+ Poxwo+c+e. (2)



Thus there are now two different model waveforms corresponding to the two stimulus time-courses. There are also two
interesting parameters to estimate, $; and (2. Thus if a particular voxel responds strongly to model z; the model-fitting
will find a large value for §;; if the data instead looks more like the second model time-course, xs, then the model-fitting
will give (s a large value. Different model waveforms within a complex model are often referred to as explanatory variables
(EVs), as they explain different processes in the data.

4.1.1. Haemodynamic response function

In order to get the best possible fit of the model to the data, the “stimulus function” (which is often a sharp on/off
waveform) is convolved with the haemodynamic response function (HRF) (Friston et al., 1994). This process mimics the
effect that the brain’s neuro-physiology has on the input function (the stimulation). The brain’s haemodynamic response
is a delayed and blurred version of the input time-series, so a mathematical operation is applied to the stimulus function
to take the square wave input and create a delayed and blurred version, which will better fit the data. For example,
see Figure 4, showing the raw stimulation timing waveform and the HRF-convolved model - z(t) - which will be used in
the model fitting. It is well established that the HRF varies between brain regions and subjects (Josephs et al., 1997).
Flexibility in the HRF can be achieved within the GLM by the use of basis sets (Josephs et al., 1997). Different linear
combinations of the basis sets can give a range of HRF shapes. A popular basis set is the stimulus convolved with a
canonical HRF shape along with its temporal derivative (Friston et al., 1998a). This can account for shifts in time of the
stimulus convolved HRF.

It is important to appreciate that non-linearities are present when there are short separations (less than approximately
3 seconds) between stimuli (Friston et al., 1998b). These experimental designs should be avoided, or nonlinearities need
to be modelled using techniques such as biophysical modelling (Buxton et al., 1998) or Volterra kernels (Friston et al.,
1998b).
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Figure 4. Model waveform formation: the square waveform describes the input stimulation timing; the smoothed
waveform results from convolving the first with the haemodynamic response function, a transformation which leaves the
model looking much more like the measured data.

4.1.2. Design Matrix

The GLM is often formulated in matrix notation. Thus all of the parameters are grouped together into a vector 3, and all
of the model time-courses are grouped together into a matrix X, often referred to as the design matrix. Figure 5 shows
an example design matrix with two such model time-courses. Each column is a different part of the model. For example,
in a particular experiment, both visual and auditory stimulations are applied, but with different timings; the left column
(z1 or EV 1) models the visual stimulation, and the right column (EV 2 or x5) models the auditory stimulation.

4.1.3. Parameter estimation and temporal autocorrelation

When the model is fit separately to the data at each voxel, there will be found an estimate of the “goodness of fit”, of
each column in the model, to that voxel’s time-course. In the example visual/auditory experiment, the first column will
generate a high first parameter estimate in the visual cortex. However, the second column will generate a low second
parameter estimate, as this part of the model will not fit the voxel’s time-course well. Mathematically, these parameter
estimates are obtained by using least squared estimators (they minimize the squared difference between the model fit and
the data).

Ideally, all of the EVs should be independent of each other. If any EV is close to being a sum (or weighted sum) of other
EVs in the design, then the fitting of the model to the data does not work properly (the design matrix is not of “full



Figure 5. Example design matrix with two explanatory variables; two different stimulations are being applied. Because
they have different timings, they are modelled separately - see Equation 2. Time is on the y axis, pointing downwards.
Note that in this particular visual representation of a design matrix, each column has two representations of the model’s
value at each point in time: the underlying intensity encodes the model’s value at a particular time point, and so does
the line graph.

rank”). A common mistake of this type is to model both rest and activation waveforms, making one an upside-down
version of the other; in this case EV 2 is -1 times EV 1, and therefore linearly dependent on it. It is only necessary to
model the activation waveform.

The presence of temporal autocorrelation in FMRI noise affects the best estimation to use (and also importantly the
accuracy of subsequent statistical tests). Typically, this requires the parameter estimation to be combined with some
form of temporal autocorrelation estimation and temporal filtering. The most commonly used approach is “prewhitening”,
which uses a temporal filter to effectively remove the autocorrelation (Bullmore et al., 1996; Friston et al., 2000; Woolrich
et al., 2001).

A wide range of different strategies have been proposed for dealing with temporal autocorrelation in FMRI. These include
autoregressive (AR) models (Bullmore et al., 1996; Locascio et al., 1997), AR plus white noise (Purdon and Weisskoff,
1998), spatial regularisation of autocorrelation estimates (Woolrich et al., 2001; Worsley et al., 2002; Gautama and
Van Hulle, 2004), and wavelet resampling (Bullmore et al., 2001).

4.1.4. T-statistics

To convert a parameter estimate (PE, i.e. the estimated 5 value) into a useful statistic, its value is compared with the
uncertainty in its estimation (resulting in what is known as a T-statistic or T-value; T = PE/standard error(PE)). If
the PE is low relative to its estimated uncertainty, the T-value will be low, and the fit is less likely to be significant (and
vice versa). (Remember, all of this is carried out separately for each voxel.)

The question remains as to how we determine that a T-value corresponds to a significant fit. This is achieved by comparing
the calculated T-value to the distribution of T-values we would expect to get if the true 8 value was zero. This is a null
hypothesis test (the null hypothesis is that [ is zero). This gives the probability, or P-value, of getting a T-value greater
than the one we have calculated if the null hypothesis were true. A low probability (low P-value) of the null hypothesis
being true means that we can more confidently reject the null hypothesis and label the voxel as having a significant fit
(later we will see how we choose a threshold value for the P-values).

Typically, we can assume that the noise in FMRI is Gaussian distributed. This means that the expected distribution of
T-values under the null hypothesis is T-distributed and a P-value can be easily calculated. Note that we can convert a
T-value into a P-value, and then into a Z-value/statistic T using standard statistical transformations; however, T', P and
Z all contain the same information - they describe how significantly the data is related to a particular part of the model
(21 or xq).

1Z is a “Gaussianised T”; if the noise in the data is Gaussian, then T' can be simply converted (taking into account the number
of time points) into Z. When there is no activation, Z follows a Gaussian distribution, with zero mean and unit variance.



4.1.5. Contrasts

As well as producing images of Z values which describe how strongly each voxel is related to each EV (one image per
EV), parameter estimates can be compared to test directly whether one EV is more “relevant” to the data than another.
To do this, one PE is subtracted from another, the standard error for this new value is calculated, and a new T image
is created. All of the above is controlled by setting up “contrasts”. To compare two EVs (for example, to subtract one
stimulus type - EV 1 - from another type - EV 2), set EV 1’s contrast value to -1 and EV 2’s to 1. This is often written
as a contrast of [-1 1], as the contrasted parameter estimate equals —1 x 81 + 1 x B3. A T statistic image will then be
generated according to this request, answering the question “where is the response to stimulus 2 significantly greater than
the response to stimulus 177

It is possible that the response to two different stimuli, when applied simultaneously, is greater than that predicted by
adding up the responses to the stimuli when applied separately. If this is the case, then such “nonlinear interactions”
need to be allowed for in the model. The simplest way of doing this is to setup the two originals EVs, and then add an
interaction EV, which will only be “up” when both of the original EVs are “up”, and “down” otherwise. In Figure 6, EV
1 could represent the application of a drug, and EV 2 could represent visual stimulation. EV 3 will model the extent to

Figure 6. Example of modelling a nonlinear interaction between stimuli. The first two EVs model the separate stimuli,
whilst the third models the interaction, i.e., accounts for the “extra” response when both stimuli are applied together.

which the response to drug&visual is greater than the sum of drug-only and visual-only. A contrast of [0 0 1] will show
this measure, whilst a contrast of [0 0 -1] shows where negative interaction is occurring.

With “parametric designs”, there are typically several different levels of stimulation, and it is common to estimate the
response to each level separately. This requires a separate EV for each stimulation level. The different contrasts ask
different questions about these responses: For example, for an experiment with 3 stimulation levels, [1 0 0] shows the
response to stimulation level 1 versus rest (likewise [0 1 0] for level 2 vs rest and [0 0 1] for level 3). [-1 1 0] shows where
the response to level 2 is greater than that for level 1. [-1 0 1] shows the general linear increase across all three levels. [1
-2 1] shows where the level dependence deviates, in an upwardly-curving way, from being linear.

4.2. Inference (“Thresholding”)

Thus we now have a statistic map (for example, T, P or Z). The next step is to threshold this, in order to decide,
at a given level of significance, which parts of the brain were activated. There are a variety of ways of carrying out
thresholding. These are now briefly outlined.

Recall that the P-value at a voxel corresponds to the probability of getting a T-value greater than the one we have
calculated if the null hypothesis were true. The simplest method of thresholding is to select a significance threshold for



the P-value and apply this to every voxel in the statistic map. The chosen P-value threshold can be interpreted as the
probability of wrongly rejecting the null hypothesis for each null hypothesis test carried out, i.e. the rate at which we
expect false positives to occur.

A problem with this is that there are many tests being carried out, because there are so many voxels in the brain. For
example, if 20000 voxels are tested for at a significance of P < 0.01 (a false positive rate of 0.01) then it is expected that
200 will be called significant by chance, even if no stimulation is applied (200 false positives). It is not ideal to blindly
accept these as being activated! This “multiple-comparison problem” means that it is not valid to accept all activations
reported by this method of thresholding; a correction is necessary to reduce the number of false positives. Typically a
Bonferroni correction is used, where the significance level at each voxel is divided by the number of voxels; this corrects
for the number of comparisons being made. However, this results in very stringent thresholding (i.e. in the case given
above, the resulting P threshold is 0.01/20000 = 0.0000005).

A refinement of the above voxel-wise thresholding is to use Gaussian random field (GRF) theory to threshold the im-
age Worsley et al. (1996). The main difference is that this method takes into account the spatial smoothness of the
statistic map (i.e. the statistical tests at each voxel are not independent). This method is less “over-conservative” than
simple voxel-wise thresholding with Bonferroni correction; typically the correction to P values is reduced (compared with
Bonferroni correction) by a factor of 2-20.

Finally, it is possible, again using GRF theory, to take into account spatial extent (i.e. size) of clusters of activations,
before estimating significance (Friston et al., 1994). Thus instead of assigning a P-value to each voxel, clusters of voxels
are created on the basis of an initial thresholding, and then each cluster is assigned a P-value, which may or may not
pass the final significance test. It is often the case that this method is more sensitive to activation than the voxel-based
methods. A limitation is the arbitrary nature of the initial thresholding, used to create the clusters.

These approaches control the false positive rate over multiple tests (the expected proportion of all tests that are false
positives). An alternative is the False Discovery Rate (FDR), which instead looks to control the expected proportion of
rejected tests that are false positives (Genovese et al., 2002; Nichols and Hayasaka, 2003). FDR, controlling procedures
are more powerful, yet still control false positives in a useful manner.

5. MULTI-SUBJECT STATISTICS

Although so far we have only discussed single-session analyses, it is common to run an experiment several times, either
on the same subject, or with several different subjects, or both. This can both increase the sensitivity of the overall
experiment (as more data can lead to increased sensitivity to an effect) or allow the generalization of any conclusions to
the whole population.

In order to combine statistics across different sessions or subjects, the first necessary step is to align the brain images
from all sessions into some common space. This is typically done using generic registration tools and can be carried out
either on the raw data (i.e. before the single-session, or “first-level”, analyses) or on the statistic maps created by the
first-level analyses.

Once all the data is aligned, there are a variety of statistical methods for combining results across sessions or subjects, to
either create a single result for a group of subjects, or to compare different groups of subjects (for example, placebo group
versus drug treatment group). These methods include “fixed-effects” and “mixed-effects” analyses. Fixed-effects assumes
that all subjects activate equally, and is only interested in within-session errors. Mixed-effects analysis additionally takes
into account between-session errors, and therefore makes less assumptions about the data; its results are therefore valid
for the whole population from which the group of subjects is drawn (whereas fixed-effects results are not). However,
the mixed-effects analysis tends to give more “conservative” results. For more detail on group modelling and estimation
see Friston et al. (2002); Beckmann et al. (2003); Woolrich et al. (2004a).

Figure 7 shows the results of the significant differences between the two subject groups in a pain-warm contrast.

6. REGISTRATION AND BRAIN ATLASES

As described above, registration (aligning different brain images) is often used when combining fMRI data from different
sessions or subjects. It can also be used to align the low-resolution fMRI images to a high-resolution structural image,



Figure 7. Significant differences between the two subject groups in a pain-warm contrast.

so that the activations can be viewed in the context of a good quality brain image; this aids in the interpretation of the
activations.

A related issue is the use of templates and brain atlases. These consist of data which is transformed into some “standard
brain space”, for example the co-ordinate system specified by Talairach and Tournoux (1988). A template is typically
an average of many brains, all registered into any given common co-ordinate system. An example is the MNI 305
average (Collins et al., 1994). An atlas is also based in a common co-ordinate system, but contains more sophisticated
information about the brain at each voxel, for example, information about tissue type, local brain structure or functional
area. Atlases can inform interpretation of fMRI experiments in a variety of ways, helping the experimenter gain the
maximum value from the data.

7. ALTERNATIVE METHODS

Most of the methods we have described for inferring brain activity from FMRI are based on using parametric statistics (e.g.
we assume the FMRI noise is Gaussian distributed). However, nonparametric approaches using permutation methods
have also been developed for null hypothesis testing. These have the advantage of being more robust to assumptions,
and can deal with tests intractable to parametric statistics (Bullmore et al., 1999; Nichols and Holmes, 2001). The main
disadvantage is that these techniques tend to be less sensitive than parametric approaches.

An emerging alternative to frequentist null hypothesis testing is to use Bayesian inference. This provides the framework for
a wider range of inference questions to be asked, for inferring on a wide range of models, and for incorporating probabilistic
prior information. For example, Bayesian methods have been used with nonlinear HRF models (Genovese, 2000; Gossl
et al., 2001; Friston, 2002; Marrelec et al., 2003; Woolrich et al., 2004c), hierarchical multi-subject/session FMRI mod-
els (Friston et al., 2002; Woolrich et al., 2004a), and adaptive spatial regularisation of FMRI model parameters (Woolrich
et al., 2004b; Penny et al., 2005).
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